
Lecture 9 (week 9: 14 April 2025)

Transport properties of solids
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• Electrical conductivity

• Thermal conductivity

• Thermoelectric effects

Lecture 9, Crystalline materials: structures and properties 
2025 



Exercises – Series 9, cross-coupled effects, 
thermoelectromechanics
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Use of constitutive equations: tips and recommendations

!"#$%& DEDE)D)D δσε ++= !

!"#$ %&%&''%% δασε ++=

!
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• What do you need to find?

• What are the boundary conditions? 

• Maybe, some input data are redundant? (some effects are not 

permitted because of symmetry…)

This reasoning helps selecting right equations



Exercises – Series 9, cross-coupled effects, 
thermoelectromechanics
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Use of constitutive equations

!"#$%& DEDE)D)D δσε ++= !

!"#$ %&%&''%% δασε ++=

!
!
"# δδ ++= !! !! "# !!σα

• Choose a suitable set of equations (previous slide) 

• Identify the tensor structure, use symmetry, boundary conditions 

and input data to simplify equations as much as possible

• check about the coordinate system of your problem, rotate the 

tensors if needed

• combine equations, get the answer



Exercises – Series 9, cross-coupled effects, 
thermoelectromechanics:
solutions and comments

4Some data are usable, others maybe redundant or irrelevant… 



Exercises from Week 8

•  9.1. The effect of mechanical conditions on the pyroelectric response 
is measured 

• 9.2 The effect of mechanical conditions on the capacitance is 
investigated 

• For both exercises one needs to check mechanical boundary conditions 
(clamped/free - what components of e and s  are zero/nonzero)
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Exercise 8.1
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Electric boundary conditions:
Short circuit, E3=0

Mechanical boundary conditions:
Case(a): si = 0

Case (b) only s3 ≠0
e3=0



Exercise 8.1
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Result:



Exercise 8.2
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electrical boundary conditions are not 
determined!
But, you do not need them do define C



Exercise 8.2
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Electric response of solids: transport vs. dielectric 
response 
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Conductivity
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Polarization
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Displacements of the charges are much
 smaller  that the interatomic distance
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Both described by 2nd rank tensor, but there are differences!



Electric response of solids, formal description
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Conductivity Polarization
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Conductivity tensor Dielectric susceptibility  tensor
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Transport property vs. equilibrium property  
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!"!" #$ τ=!"!#" $%& ε=

Dielectric response
- equilibrium property

Electrical Conductivity
- transport property
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Conductivity : Effect of Neumann in conventional axes
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Anisotropy of conductivity 
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!"!" #$ τ=

In anisotropic materials current  is NOT ALWAYS 
parallel to the field !
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Current  is always parallel to the field only if
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Transversal voltage  
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a) (first moment, transient response)
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!!!!" Bi4Ti3O12 !

transverse component of the electric field



Transversal voltage  
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Example Bi4Ti3O12
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Transversal voltage and Hall effect  
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Cu isotropic conductor!!!

!
V

V= 0
!

V

V ≠ 0

Magnetic field

Lorentz force:

F=q (v x B)

Hall voltage:
VH=(IxBz)/(ntq), where n-charge density, t-thickness, q-charge 



Hall effect  
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Isotropic conductor

!
V

V ≠ 0

Magnetic field

2. Transport effect à current

1. Magnetic field modify the symmetry of the 
system allowing the transverse voltage in 

isotropic conductor 



Hall effect: tensor aspect   
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Isotropic conductor

!
V

V ≠ 0

Magnetic field

Hall effects is controlled by a 3rd rank 
pseudo-tensor
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Thermoelectric 
transport effects 



Thermal conductivity 
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kij (kappa) – thermal conductivity tensor, hi – heat flux



Thermoelectricity 
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Electrical Conductivity Thermal Conductivity
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Thermoelectricity 

Cross effects:
There should be a component of current proportional to the temperature gradient!



Thermoelectricity vs. piezoelectricity

24

!
"!!"!"

!
"!!"!"

#
$%&'E

#
$)&*

∂
∂

−=

∂
∂

+=τ

Thermoelectricity 

!"#$!"!!#$#$

$!#$!$#$#

%&D

D&E)

σε

σε

+=

+= !

Piezoelectricty 

Maxwell relations ??????????



Onsager relations for thermo-electric 
transport phenomena
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!""! ττ =
!""! ## =

!""! #$% −=

Maxwell relations cannot be applied 
because the energy does not characterize the state 

of the material in a transport phenomenon

Onsager relations can be obtained from considerations 
in terms of the energy dissipation in a process

Onsager relations express the equality of certain ratios between flows and forces



Themoelectricity vs. piezoelectricity

26

!
"!!!""

!
"!!"!"

#
$%&$'E

#
$'&)

∂
∂

−−=

∂
∂

+= τ

Thermoelectricity 

!"#$!"!!#$#$

$!#$!$#$#

%&D

D&E)

σε

σε

+=

+= !

Piezoelectricty 

Maxwell relations Onsager relations



Standard description of thermoelectricity
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Changing variables:
Instead of field use current and temperature



Thermoelectric effect - example
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Seebeck  effect
!
"#$
∂
∂

Σ+= ρ

!
"#

∂
∂

−==
ϕ!

!"#$%& =Σ+ϕ

!"# =Σ+
∂
∂ !
"
ϕ

!" !"!" ## −Σ−=−ϕϕ

!
T1 T2

!ϕ !ϕ

!" ϕϕ − ?

V

TV

!ϕ !ϕ

For simplicity Seebeck koefficients are considered T-independent 



Thermoelectric effect - example
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Seebeck  effect

!
T1 T2!ϕ !ϕ

V

TV

!ϕ !ϕ
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!" ## !!"# −Σ−=−ϕϕ !"!" #$$# !!!!"# −Σ−−Σ−=−ϕϕ

S cannot be measured this way

This is rigorous for small T1 –T2, since S is 
temperature dependent.
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Thermoelectric effect - example
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Seebeck  effect
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This is rigorous for small T1 –T2, since S is 
temperature dependent.
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Thermoelectric effect - example
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Thermoelectric Peltier and Seebeck effects

• We can regard the Peltier effect as the back-action counterpart to the 

Seebeck effect : 

 -if a thermoelectric circuit is closed then the Seebeck effect will 

drive a current

 - this current in turn will always transfer heat from the hot to the 

cold junction (via the Peltier effect) 

 - relationship between Peltier and Seebeck effects is seen in the 

connection between their coefficients

• Applications:

 -small refrigerators /coolers (Peltier effect) –compact, no fluids

 -temperature sensors (Seebeck effects ) - thermocouples
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All symmetries
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There is no physical reason to expect Seebeck tensor to be 
symmetrical
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Seebeck coefficients of selected metals

S at 0 °C

(µV K -1)

S at 27 °C

(µV K -1)

Al 1.6 1.8

Au -1.79 -1.94

Cu -1.70 -1.84
Na 5

Pd 9.00 9.99

Pt 4.45

287

!"#"# $" −− −≅ϕ

!"##=∆!

at room temperature
!!!

Convention in engineering: Seebeck coefficient S = - S

Bi2Te3 n-type

rhombohedral 
S at 54 °C

µV K-1
https://www.omega.com/en-us/colorcodes

Useful numbers, temperature ranges:
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Applications of Neumann equation

Example: S12? 
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Applications of Neumann equation

Example: S12-? 
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9

5

3

2-3

1

Thermoelectric anisotropy and axis choice

6

4

⇒
⇒

} !""! Σ≠Σ



Equilibrium and transport properties  
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!"τ

Equilibrium Transport
!"#Dielectric response

Elasticity !"#$% !"#$%

Piezoelectricity and 
converse piezoelectricity 

!"#$

Pyroelectricity and 
electrocaloric
Thermal expansion and
piezocaloric

Heat capacity 

!"

!"α

!

Electrical conductivity

!"#Thermal conductivity

!"ΣSeebeck and Peltier
effect

Hall effect !"#$

Maxwell relations
Onsager relations
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Essential

1. The symmetry of a material can be translated 
into the symmetry of its transport properties.

2. Thermoelectric effects: Peltier and Seebeck 
effects

3. Transport properties  give an examples
 of a non-symmetric second rank tensor - 

Thermoelectric tensor (Seebeck coefficients)


