

Lecture 9 (week 9: 14 April 2025)

Transport properties of solids

- Electrical conductivity
- Thermal conductivity
- Thermoelectric effects

Exercises – Series 9, cross-coupled effects, thermoelectromechanics

Use of constitutive equations: tips and recommendations

$$D_i = \varepsilon_0 K_{ij} E_j + d_{in} \sigma_n + p_i \delta T$$

$$\varepsilon_n = d_{in} E_i + s_{nm} \sigma_m + \alpha_n \delta T$$

$$\delta S = p_i E_i + \alpha_m \sigma_m + \frac{C}{T} \delta T$$

- What do you need to find?
- What are the boundary conditions?
- Maybe, some input data are redundant? (some effects are not permitted because of symmetry...)

This reasoning helps selecting right equations

Exercises – Series 9, cross-coupled effects, thermoelectromechanics

Use of constitutive equations

$$D_i = \varepsilon_0 K_{ij} E_j + d_{in} \sigma_n + p_i \delta T$$

$$\varepsilon_n = d_{in} E_i + s_{nm} \sigma_m + \alpha_n \delta T$$

$$\delta S = p_i E_i + \alpha_m \sigma_m + \frac{C}{T} \delta T$$

- Choose a suitable set of equations (previous slide)
- Identify the tensor structure, use symmetry, boundary conditions and input data to simplify equations as much as possible
- check about the coordinate system of your problem, rotate the tensors if needed
- combine equations, get the answer

Exercises – Series 9, cross-coupled effects, thermoelectromechanics: solutions and comments

In all the exercises, the material used is BaTiO₃ in its tetragonal phase 4mm. The 4-fold axis is always directed along the x_3 axis. You may use the table of values for BaTiO₃ given below if needed.

s_{11}	$8.05 \times 10^{-12} \text{ m}^2/\text{N}$	d_{15}	$392 \times 10^{-12} \text{ C/N}$
s_{12}	$-2.35 \times 10^{-12} \text{ m}^2/\text{N}$	d_{31}	$-35 \times 10^{-12} \text{ C/N}$
s_{13}	$-5.24 \times 10^{-12} \text{ m}^2/\text{N}$	d_{33}	$86 \times 10^{-12} \text{ C/N}$
s_{33}	$15.7 \times 10^{-12} \text{ m}^2/\text{N}$	K_{33}	150
C	$2.42 \times 10^6 \text{ J}/(\text{m}^3 \cdot \text{K})$	p_3	$-5 \times 10^{-4} \text{ C}/(\text{m}^2 \cdot \text{K})$
α_3	$3.5 \times 10^{-5} \text{ 1/K}$		

Some data are usable, others maybe redundant or irrelevant...

Exercises from Week 8

- 9.1. The effect of mechanical conditions on the pyroelectric response is measured
- 9.2 The effect of mechanical conditions on the capacitance is investigated
 - For both exercises one needs to check mechanical boundary conditions (clamped/free - what components of ϵ and σ are zero/nonzero)

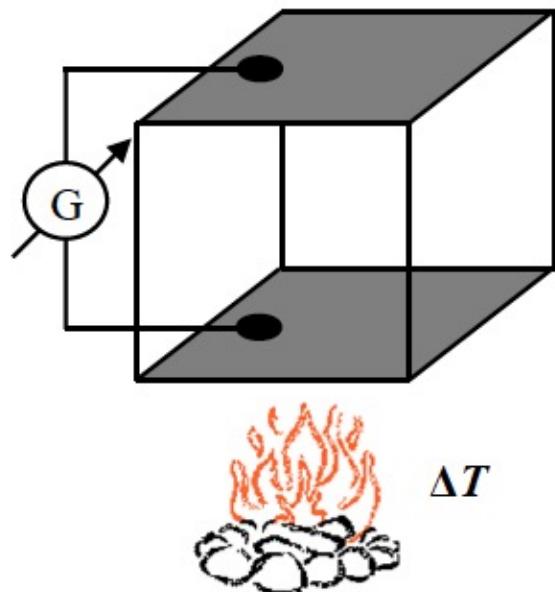
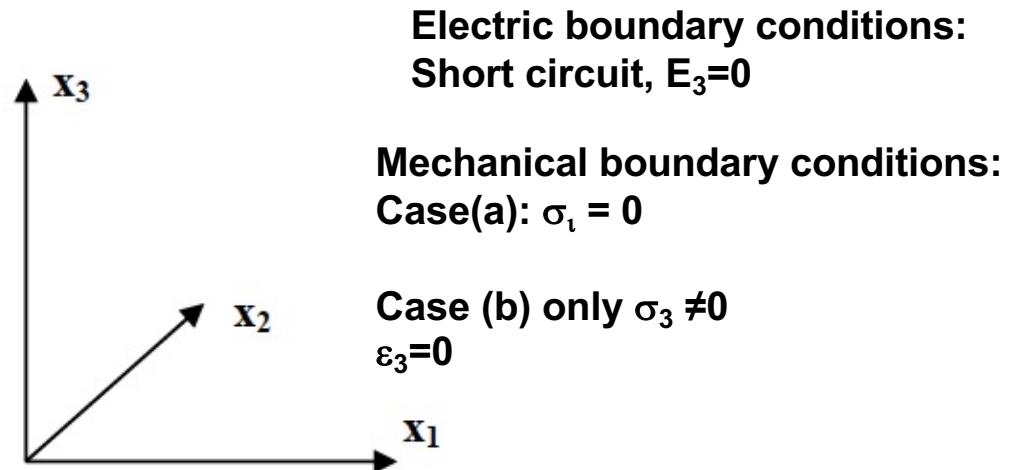
Exercise 8.1

9.1. The effect of mechanical conditions on the pyroelectric response is measured. To do it, the (001) surfaces of the parallelepiped BaTiO_3 sample are covered with electrodes, and the change of the surface charge, driven by the temperature change, is measured (Fig.1).

In measurement (a), the sample is kept mechanically free.

In measurement (b), the sample is kept mechanically free in the x_1 and x_2 directions, while the motion in the x_3 direction is blocked.

Find the difference between the pyroelectric coefficients $p_{(a)}$ and $p_{(b)}$ measured these two ways (provide the answer in the analytical form)



Exercise 8.1

$$D_i = \varepsilon_0 K_{ij} E_j + d_{ij} \sigma_j + p_i \Delta T,$$
$$\varepsilon_i = d_{ji} E_j + s_{ij} \sigma_j + \alpha_i \Delta T.$$

In both cases, the electric field $E_3 = 0$ since the (001) electrodes are electrically connected. In order to simplify the equation for D_3 , we use the $4mm$ symmetry restrictions for tensor K_{ij} ($K_{31} = K_{32} = 0$), thus $K_{31}E_1 = K_{32}E_2 = 0$. The equation for D_3 attains the following form:

$$D_3 = d_{3j} \sigma_j + p_3 \Delta T$$

In case **(a)**, the sample is mechanically free, implying all $\sigma_j = 0$. Then, $D_3 = p_3 \Delta T$, and

$$p_{(a)} = \frac{D_3}{\Delta T} = p_3.$$

In case **(b)**, the sample is kept mechanically free in x_1 and x_2 directions, implying $\sigma_1 = \sigma_2 = \sigma_4 = \sigma_5 = \sigma_6 = 0$, and $\sigma_3 \neq 0$. Then, equation for D_3 rewrites as

$$D_3 = d_{33} \sigma_3 + p_3 \Delta T$$

To find σ_3 , we use the constitutive equation for $\varepsilon_3 = 0$, which must not change during the measurement (note that $E_3 = 0$):

$$\varepsilon_3 = d_{j3} E_j + s_{33} \sigma_3 + \alpha_3 \Delta T = d_{13} E_1 + d_{23} E_2 + s_{33} \sigma_3 + \alpha_3 \Delta T$$

Result:

$$D_3 = \left(p_3 - \frac{d_{33} \alpha_3}{s_{33}} \right) \Delta T,$$
$$p_{(b)} = \frac{D_3}{\Delta T} = p_3 - \frac{d_{33} \alpha_3}{s_{33}}.$$

Thus, in **(a)** and **(b)** the measured pyroelectric responses are different. Specifically,

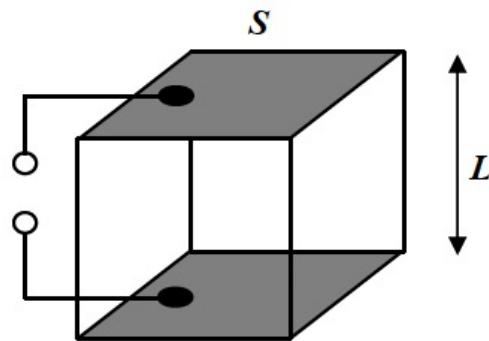
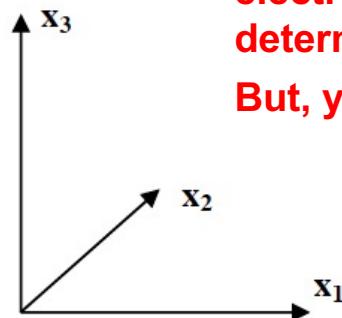
$$p_{(a)} - p_{(b)} = \frac{d_{33} \alpha_3}{s_{33}}$$

Exercise 8.2

The effect of mechanical conditions on the capacitance is investigated. To do it, the (001) surfaces of the parallelepiped BaTiO_3 sample (distance between the (001) faces is L , the area of each (001) face is S) are covered with electrodes (fig.2), and the capacitance of the sample is measured.

In measurement (a), the sample is kept mechanically free.

In measurement (b), the sample is kept mechanically free in the x_1 and x_2 directions (i.e., in plane of capacitor), while the distance between electrodes L is forced to not change.



electrical boundary conditions are not determined!
But, you do not need them to define C

$$C = \frac{\Delta Q}{\Delta V} = \frac{\Delta D_3 \cdot S}{\Delta E_3 \cdot L}$$

Show that the two measured capacitances $C_{(a)}$ and $C_{(b)}$ have different values. Calculate the relative difference between them $\frac{C_{(a)} - C_{(b)}}{C_{(a)}}$. All measurements are done at constant temperature.

Exercise 8.2

$$D_i = \varepsilon_0 K_{ij} E_j + d_{ij} \sigma_j,$$

$$\varepsilon_i = d_{ji} E_j + s_{ij} \sigma_j.$$

$$(K_{31} = K_{32} = 0)$$

$$D_3 = \varepsilon_0 K_{33} E_3 + d_{3j} \sigma_j.$$

(a), the sample is mechanically free, implying all $\sigma_j = 0$. Then, $D_3 = \varepsilon_0 K_{33} E_3$, and

$$C_{(a)} = \frac{D_3 \cdot S}{E_3 \cdot L} = \varepsilon_0 K_{33} \frac{S}{L}.$$

In case (b), the sample is kept mechanically free in x_1 and x_2 directions, implying $\sigma_1 = \sigma_2 = \sigma_4 = \sigma_5 = \sigma_6 = 0$, and $\sigma_3 \neq 0$. Then, equation for D_3 rewrites as

$$D_3 = \varepsilon_0 K_{33} E_3 + d_{33} \sigma_3.$$

$$\varepsilon_3 = d_{j3} E_j + s_{33} \sigma_3 = d_{13} E_1 + d_{23} E_2 + d_{33} E_3 + s_{33} \sigma_3$$

$$\varepsilon_3 = d_{33} E_3 + s_{33} \sigma_3 = 0 \Rightarrow \sigma_3 = -\frac{d_{33}}{s_{33}} E_3,$$

$$D_3 = \left(\varepsilon_0 K_{33} - \frac{d_{33}^2}{s_{33}} \right) E_3,$$

$$C_{(b)} = \frac{D_3 \cdot S}{E_3 \cdot L} = \left(\varepsilon_0 K_{33} - \frac{d_{33}^2}{s_{33}} \right) \frac{S}{L}.$$

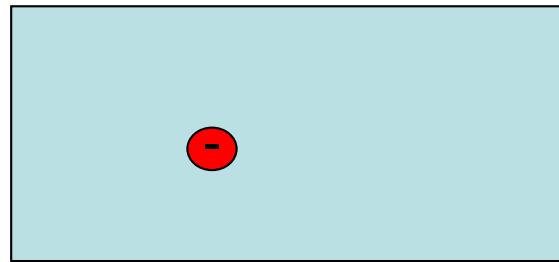
Thus, in (a) and (b) the measured capacitances are different. Specifically,

$$\frac{C_{(a)} - C_{(b)}}{C_{(a)}} = \frac{d_{33}^2 / s_{33}}{\varepsilon_0 K_{33}} = 0.35$$

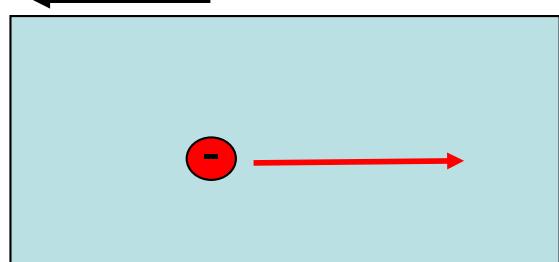
Electric response of solids: transport vs. dielectric response

Conductivity

$$E = 0 \quad \langle v_{ch} \rangle = 0$$



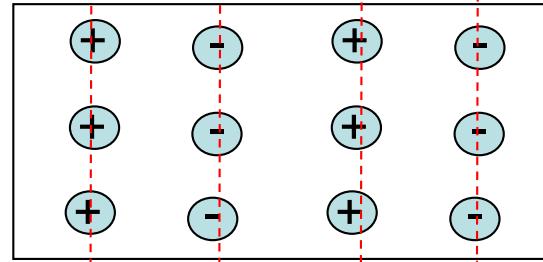
$$E \neq 0 \quad \langle v_{ch} \rangle \neq 0$$



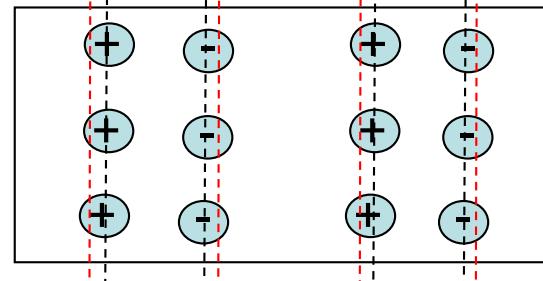
Displacements of the charges are much
larger than the interatomic distance

Polarization

$$\vec{l} \quad E = 0 \quad \langle v_{ch} \rangle = 0$$



$$\vec{l} \quad E \neq 0 \quad \langle v_{ch} \rangle = 0$$



Displacements of the charges are much
smaller than the interatomic distance

Both described by 2nd rank tensor, but there are differences!

Electric response of solids, formal description

Conductivity

$$\vec{J} = \frac{\sum_i q_i \vec{v}_i}{V}$$

Polarization

$$\vec{P} = \frac{\sum_i q_i \vec{\delta x}_i}{V}$$

Linear response

$$J_i = \tau_{ij} E_j$$

$$P_i = \chi_{ij} E_j$$

Conductivity tensor

$$\tau_{ij}$$

can be shown

$$\tau_{ij} = \tau_{ji}$$

Dielectric susceptibility tensor

$$\chi_{ij}$$

$$\chi_{ij} = \chi_{ji}$$

Transport property vs. equilibrium property

Dielectric response
- equilibrium property

$$D_i = \epsilon_0 K_{ij} E_j$$

$$K_{ij} = K_{ji}$$

Energy at fixed E

$$dW = E_i dD_i \quad W = \frac{1}{2} E_j D_j$$

Electrical Conductivity
- transport property

$$J_i = \tau_{ij} E_j$$

$$\tau_{ij} = \tau_{ji}$$

Energy loss at fixed E

$$\frac{dW}{dt} = -E_j J_j$$

Conductivity : Effect of Neumann in conventional axes

 1 (C ₁)			 1-bar (C ₁)			
 2 (C ₂)			 m (C ₂)		 2/m (C _{2n})	
 3 (C ₃)			 mm2 (C _{2v})	 222 (D ₂)	 mmm (D _{3n})	
 4 (C ₄)	 4-bar (S ₄)	 42m (D _{2d})	 4/m (C _{4v})	 4mm (C _{4v})	 422 (D ₄)	 4/mmm (D _{4h})
 6 (C ₆)	 6-bar (C _{3h})	 62m (D _{3d})	 6/m (C _{6h})	 6mm (C _{6v})	 622 (D ₆)	 6/mmm (D _{6h})
 23 (T)			 m3-bar (T _{2h})	 43m (T _d)	 432 (O)	 m3m (O _h)

$$\begin{array}{c}
 \xrightarrow{\hspace{2cm}} \begin{pmatrix} \tau_{11} & \tau_{12} & \tau_{13} \\ \tau_{22} & \tau_{23} & \\ \tau_{33} & & \end{pmatrix} \\
 \xleftarrow{\hspace{2cm}} \begin{pmatrix} \tau_{11} & 0 & \tau_{13} \\ \tau_{22} & 0 & \\ \tau_{33} & & \end{pmatrix} \\
 \xrightarrow{\hspace{2cm}} \begin{pmatrix} \tau_{11} & 0 & 0 \\ \tau_{22} & 0 & \\ \tau_{33} & & \end{pmatrix} \\
 \xleftarrow{\hspace{2cm}} \left\{ \begin{pmatrix} \tau_1 & 0 & 0 \\ \tau_1 & 0 & \\ \tau_3 & & \end{pmatrix} \right. \\
 \xleftarrow{\hspace{2cm}} \left. \begin{pmatrix} \infty & \infty m & \infty 2 \\ \infty / m & \infty / mm & \end{pmatrix} \right. \\
 \xleftarrow{\hspace{2cm}} \left\{ \begin{pmatrix} \tau & 0 & 0 \\ \tau & 0 & \\ \tau & & \end{pmatrix} \right. \\
 \xleftarrow{\hspace{2cm}} \left. \begin{pmatrix} \infty \infty \infty & \infty \infty m & \end{pmatrix} \right.
 \end{array}$$

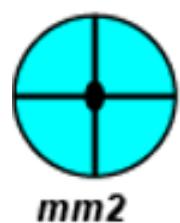
Anisotropy of conductivity

$$J_i = \tau_{ij} E_j$$

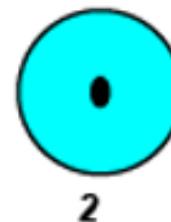
Current is always parallel to the field only if

$$\tau_{ij} = \tau \delta_{ij}$$

In anisotropic materials current is NOT ALWAYS parallel to the field !



$$\begin{pmatrix} \tau_{11} & 0 & 0 \\ & \tau_{22} & 0 \\ & & \tau_{33} \end{pmatrix}$$



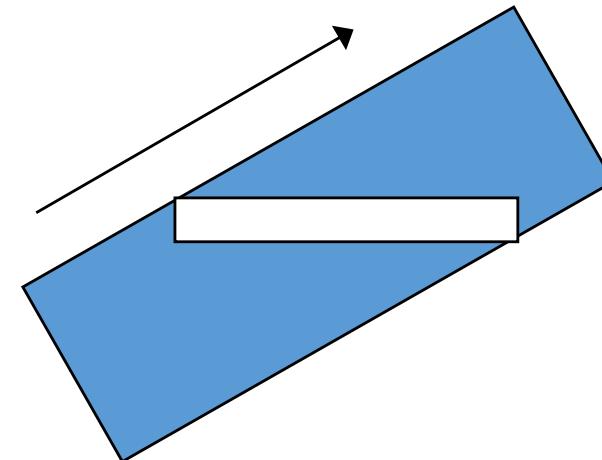
$$\begin{pmatrix} \tau_{11} & 0 & \tau_{13} \\ & \tau_{22} & 0 \\ & & \tau_{33} \end{pmatrix}$$

Transversal voltage

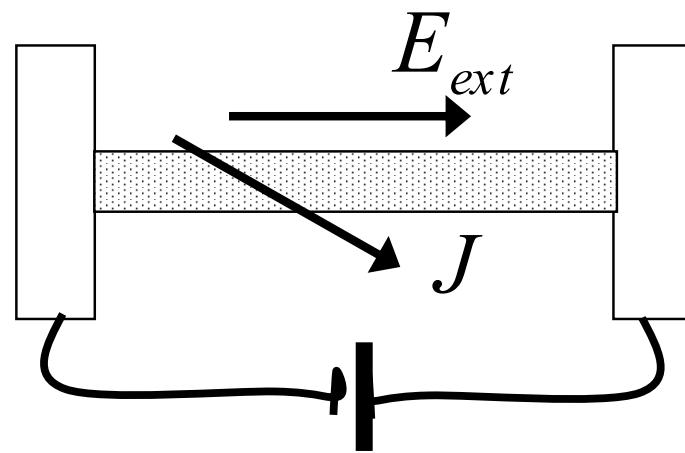
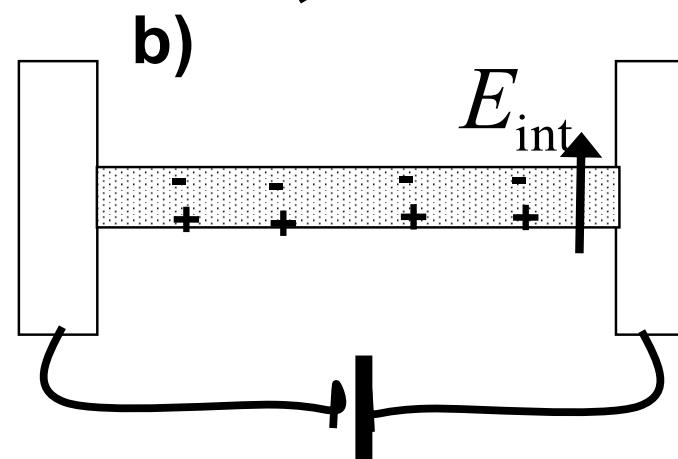
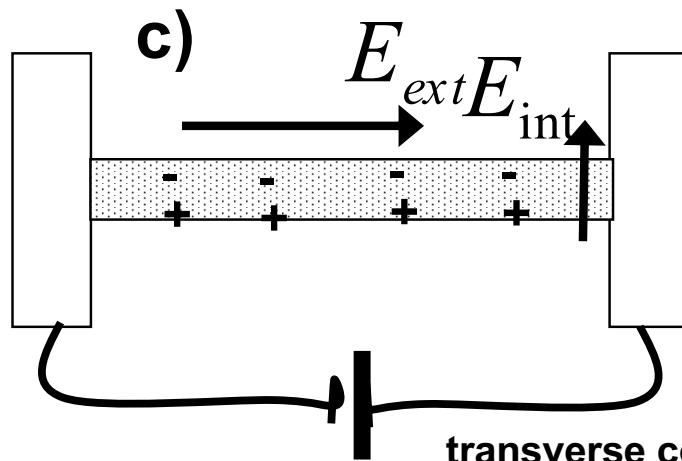
4 / *mmm*

Bi₄Ti₃O₁₂

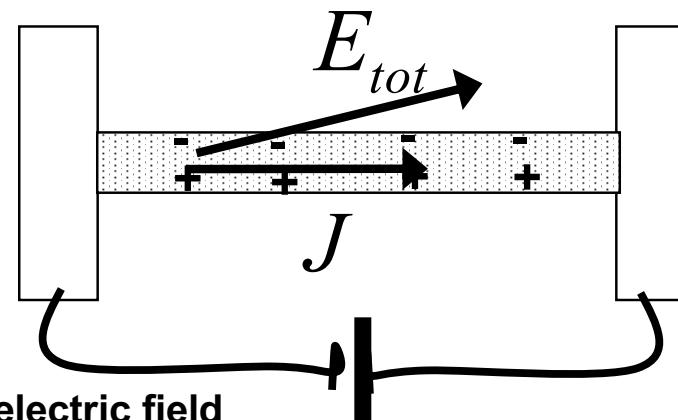
4



a) (first moment, transient response)



d) (steady-state current response)



Transversal voltage

Example $\text{Bi}_4\text{Ti}_3\text{O}_{12}$

Made of less conductive layers TiO_2 and more conductive layers Bi_2O_3

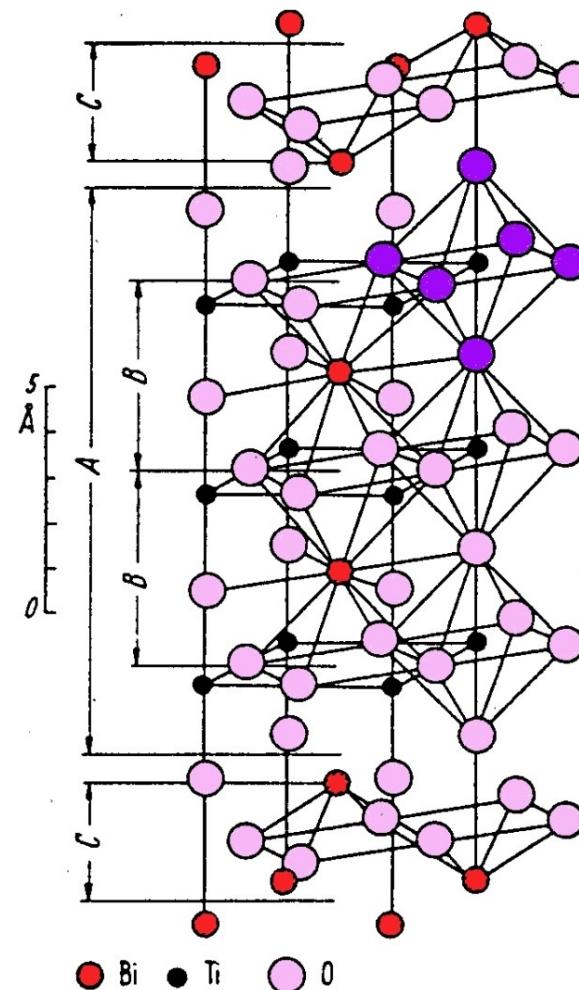
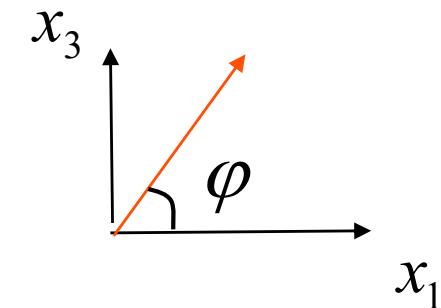
4/mmm

$$T = 800^{\circ}\text{C}$$

$$a = 0.25 \text{ } (\Omega\text{m})^{-1}$$

$$b = 0.016 \text{ } (\Omega\text{m})^{-1}$$

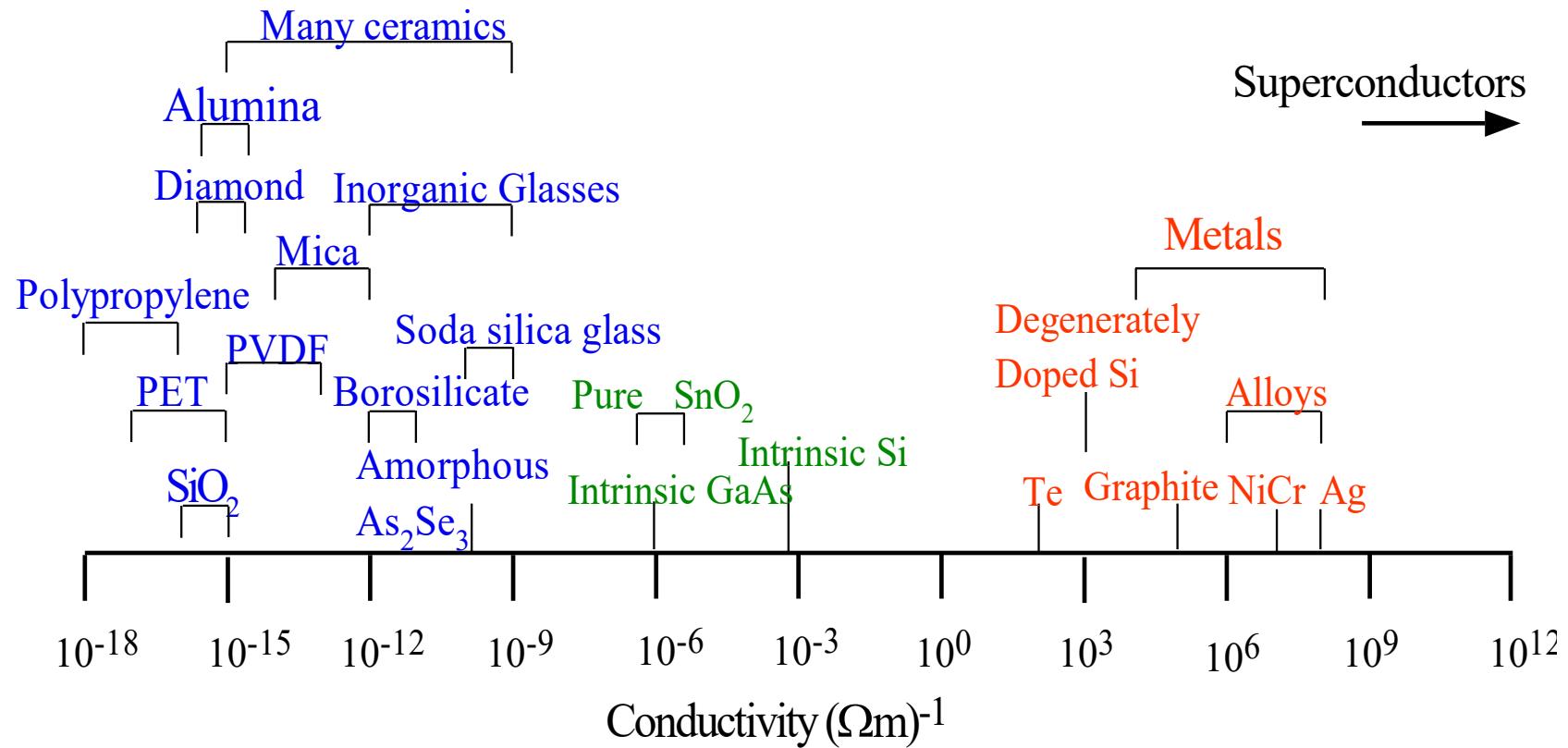
$$\underline{\tau} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$



$$\left. \frac{E_{\perp}}{E_{\uparrow\uparrow}} \right|_{\text{max}} \approx 2$$

$$\left. \varphi \right|_{\text{max}} \approx 4^{\circ}$$

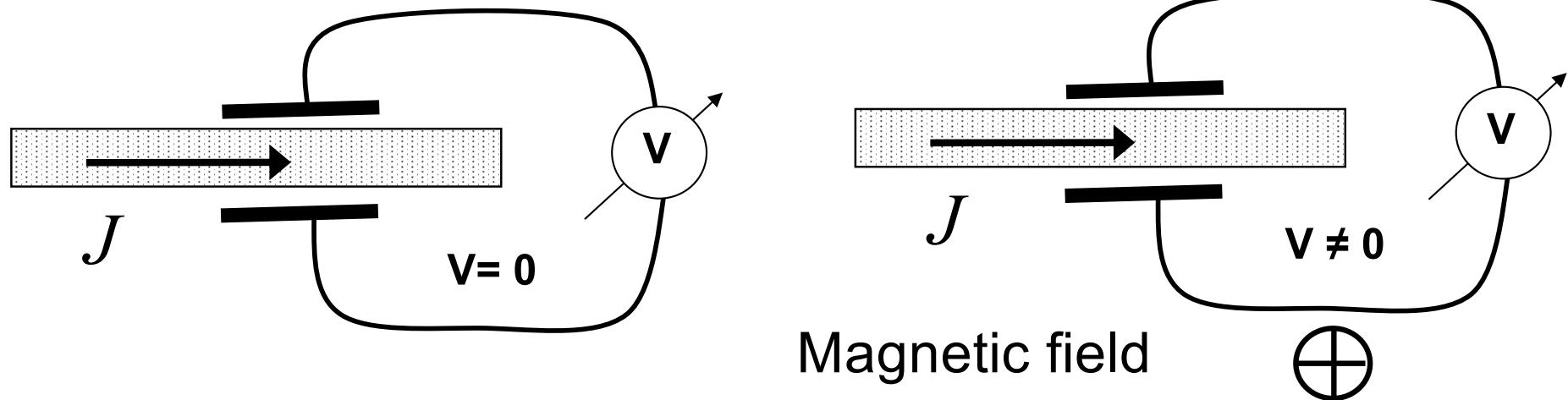
Spread of conduction



Transversal voltage and Hall effect

$m\bar{3}m$

Cu isotropic conductor



Lorentz force:

$$F = q (v \times B)$$

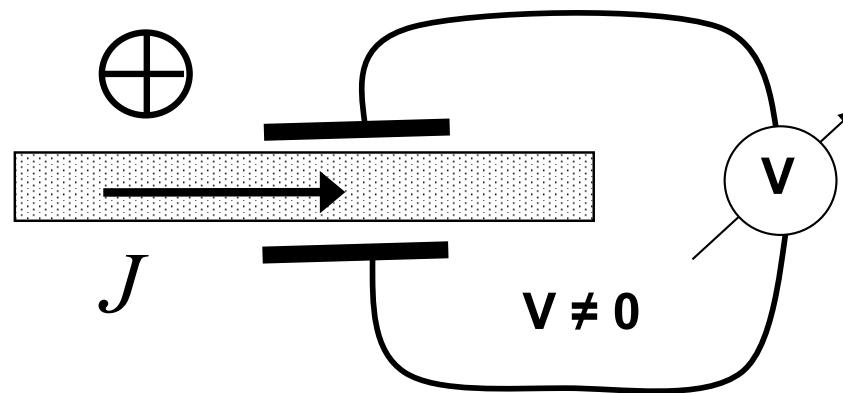
Hall voltage:

$$V_H = (I_x B_z) / (n t q), \text{ where } n - \text{charge density, } t - \text{thickness, } q - \text{charge}$$

Hall effect

Isotropic conductor

Magnetic field

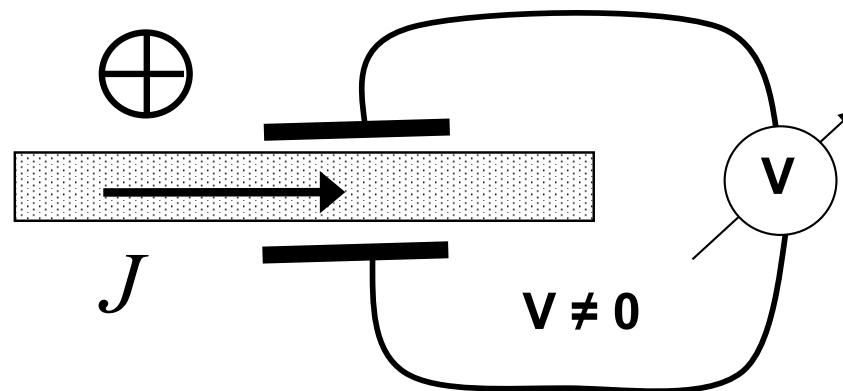


- 1. Magnetic field modify the symmetry of the system allowing the transverse voltage in isotropic conductor**
- 2. Transport effect → current**

Hall effect: tensor aspect

Isotropic conductor

Magnetic field



**Hall effect is controlled by a 3rd rank
pseudo-tensor**

$$E_i = R_{ijk} B_j J_k$$

Thermoelectric transport effects

Thermal conductivity

Energy dissipation

$$h_i = -k_{ij} \frac{\partial T}{\partial x_j}$$

$$k_{ji} = k_{ij}$$

$$\frac{dW}{dt} = \frac{h_i}{T} \frac{\partial T}{\partial x_j}$$

k_{ij} (kappa) – thermal conductivity tensor, h_i – heat flux

Analogy to electrical conductivity

$$E_i = -\frac{\partial \phi}{\partial x_j}$$

$$J_i = -\tau_{ij} \frac{\partial \phi}{\partial x_j}$$

$$\frac{dW}{dt} = J_j \frac{\partial \phi}{\partial x_j}$$

$$\frac{\partial \phi}{\partial x_j} \Rightarrow \frac{\partial T}{\partial x_j}$$

$$J_i \Rightarrow \frac{h_i}{T}$$

Thermoelectricity

Electrical Conductivity

$$J_i = \tau_{ij} E_j$$

Thermal Conductivity

$$h_i = -k_{ij} \frac{\partial T}{\partial x_j}$$

Thermoelectricity

$$J_i = \tau_{ij} E_j + a_{ij} \frac{\partial T}{\partial x_j}$$

$$h_i = b_{ij} E_j - k_{ij} \frac{\partial T}{\partial x_j}$$

Cross effects:

There should be a component of current proportional to the temperature gradient!

Thermoelectricity vs. piezoelectricity

Piezoelectricity

$$D_i = \epsilon_0 K_{ij} E_j + d_{ijk} \sigma_{jk}$$

$$\epsilon_{ij} = d_{kij} E_k + s_{ijkl} \sigma_{kl}$$

Maxwell relations

Thermoelectricity

$$J_i = \tau_{ij} E_j + a_{ij} \frac{\partial T}{\partial x_j}$$

$$h_i = b_{ij} E_j - k_{ij} \frac{\partial T}{\partial x_j}$$

???????????

Onsager relations for thermo-electric transport phenomena

$$\tau_{ij} = \tau_{ji}$$

$$k_{ji} = k_{ij}$$

$$b_{ij} = -Ta_{ji}$$

**Maxwell relations cannot be applied
because the energy does not characterize the state
of the material in a transport phenomenon**

**Onsager relations can be obtained from considerations
in terms of the energy dissipation in a process**

Thermoelectricity vs. piezoelectricity

Piezoelectricity

$$D_i = \epsilon_0 K_{ij} E_j + d_{ijk} \sigma_{jk}$$

$$\epsilon_{ij} = d_{kij} E_k + s_{ijkl} \sigma_{kl}$$

Maxwell relations

Thermoelectricity

$$J_i = \tau_{ij} E_j + a_{ij} \frac{\partial T}{\partial x_j}$$

$$h_i = -T a_{ji} E_j - k_{ij} \frac{\partial T}{\partial x_j}$$

Onsager relations

Standard description of thermoelectricity

Changing variables:
Instead of field use current and temperature

$$J_i = \tau_{ij} E_j + a_{ij} \frac{\partial T}{\partial x_j}$$

$$h_i = -T a_{ji} E_j - k_{ij} \frac{\partial T}{\partial x_j}$$

$$E_i = \rho_{ij} J_j + \Sigma_{ij} \frac{\partial T}{\partial x_j}$$
$$h_i = T \Sigma_{ji} J_j - \tilde{k}_{ij} \frac{\partial T}{\partial x_j}$$

$$\rho_{ij} = \tau^{-1}_{ij}$$

$$\Sigma_{ij} = -\rho_{il} a_{lj}$$

$$\tilde{k}_{ij} = k_{ij} - T a_{si} \rho_{sl} a_{lj}$$

$$\Sigma_{ij}$$

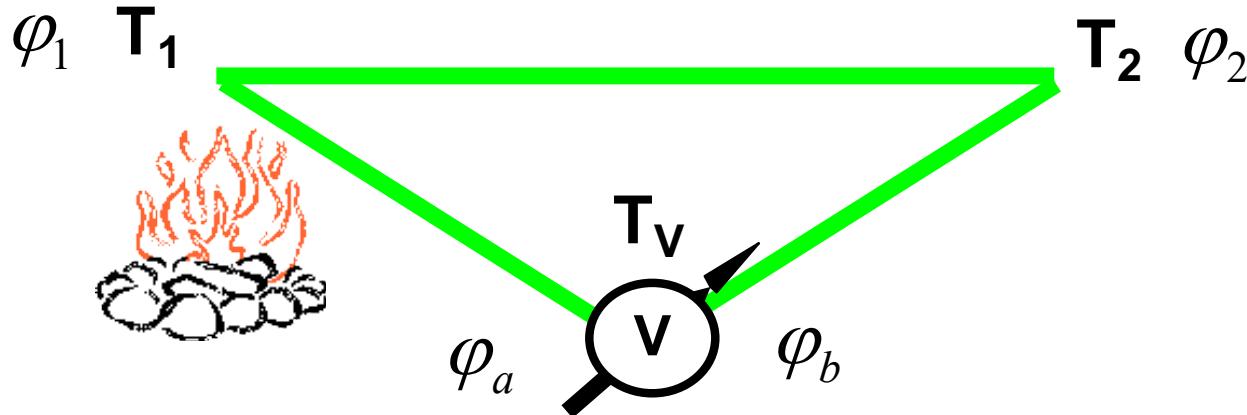
**Thermoelectric tensor
(Seebeck coefficients)**

In general

$$\Sigma_{ij} \neq \Sigma_{ji}$$

Thermoelectric effect - example

Seebeck effect



$$\varphi_b - \varphi_a \quad ?$$

$$\varphi_f - \varphi_i = -\sum(T_f - T_i)$$

$$E = \rho J + \sum \frac{\partial T}{\partial x}$$

$$J = 0 \quad E = -\frac{\partial \varphi}{\partial x}$$

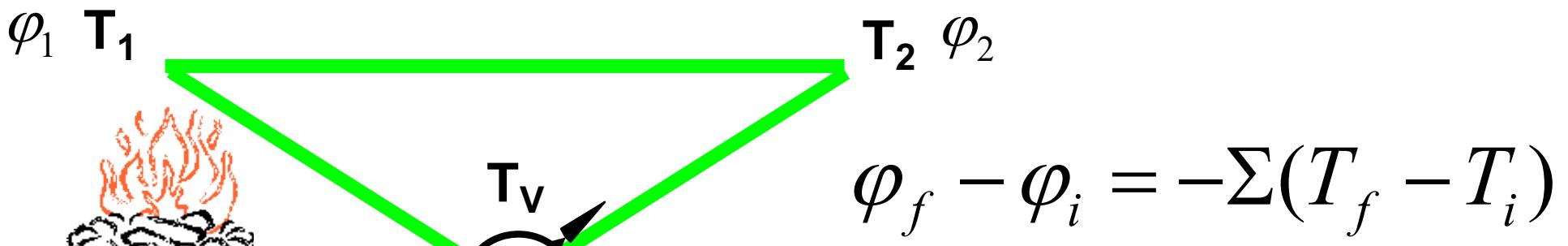
$$\frac{\partial}{\partial x}(\varphi + \sum T) = 0$$

$$\varphi + \sum T = \text{const}$$

For simplicity Seebeck koefficients are considered T-independent

Thermoelectric effect - example

Seebeck effect



$$\varphi_f - \varphi_i = -\sum(T_f - T_i)$$

$$\varphi_b - \varphi_2 = -\sum(T_V - T_2)$$

$$\varphi_b - \varphi_1 = -\sum(T_V - T_2) - \sum(T_2 - T_1)$$

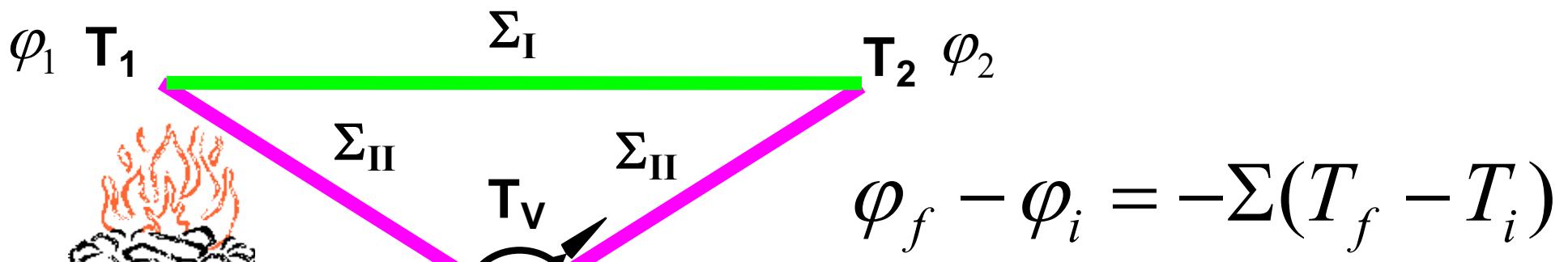
$$\varphi_b - \varphi_a = -\sum(T_V - T_2) - \sum(T_2 - T_1) - \sum(T_1 - T_V) = 0$$

Σ cannot be measured this way

This is rigorous for small $T_1 - T_2$, since Σ is temperature dependent.

Thermoelectric effect - example

Seebeck effect



$$\varphi_b - \varphi_2 = -\Sigma_{\text{II}}(T_V - T_2)$$

$$\varphi_b - \varphi_1 = -\Sigma_{\text{II}}(T_V - T_2) - \Sigma_{\text{I}}(T_2 - T_1)$$

$$\varphi_b - \varphi_a = -\Sigma_{\text{II}}(T_V - T_2) - \Sigma_{\text{I}}(T_2 - T_1) - \Sigma_{\text{II}}(T_1 - T_V) = (\Sigma_{\text{II}} - \Sigma_{\text{I}})(T_2 - T_1)$$

This is rigorous for small $T_1 - T_2$, since Σ is temperature dependent.

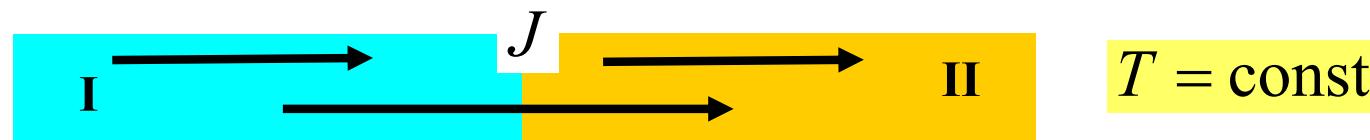
Thermoelectric effect - example

Peltier effect

$$h = T \Sigma J - \tilde{k} \frac{\partial T}{\partial x}$$

$$h^I = T \Sigma^I J$$

$$h^{II} = T \Sigma^{II} J$$



$$\frac{dQ}{dt} = S(h^I - h^{II}) = STJ(\Sigma^I - \Sigma^{II}) = T(\Sigma^I - \Sigma^{II})I$$

Thermoelectric Peltier and Seebeck effects

- We can regard the Peltier effect as the back-action counterpart to the Seebeck effect :
 - if a thermoelectric circuit is closed then the Seebeck effect will drive a current
 - this current in turn will always transfer heat from the hot to the cold junction (via the Peltier effect)
 - relationship between Peltier and Seebeck effects is seen in the connection between their coefficients
- Applications:
 - small refrigerators /coolers (Peltier effect) –compact, no fluids
 - temperature sensors (Seebeck effects) - thermocouples

All symmetries

There is no physical reason to expect Seebeck tensor to be symmetrical

$$\begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\ \Sigma_{21} & \Sigma_{22} & \Sigma_{23} \\ \Sigma_{31} & \Sigma_{32} & \Sigma_{33} \end{pmatrix}$$

$$\begin{pmatrix} \Sigma_{11} & \Sigma_{12} & 0 \\ \Sigma_{21} & \Sigma_{22} & 0 \\ 0 & 0 & \Sigma_{33} \end{pmatrix}$$

$$\begin{pmatrix} \Sigma_{11} & 0 & 0 \\ 0 & \Sigma_{22} & 0 \\ 0 & 0 & \Sigma_{33} \end{pmatrix}$$

$$\begin{pmatrix} \Sigma_{11} & 0 & 0 \\ 0 & \Sigma_{11} & 0 \\ 0 & 0 & \Sigma_{33} \end{pmatrix}$$

$$\begin{pmatrix} \Sigma_{11} & \Sigma_{12} & 0 \\ -\Sigma_{12} & \Sigma_{11} & 0 \\ 0 & 0 & \Sigma_{33} \end{pmatrix}$$

∞ ∞/m

$$\begin{pmatrix} \Sigma & 0 & 0 \\ 0 & \Sigma & 0 \\ 0 & 0 & \Sigma \end{pmatrix}$$

$\infty\infty$ $\infty\infty m$

Seebeck coefficients of selected metals

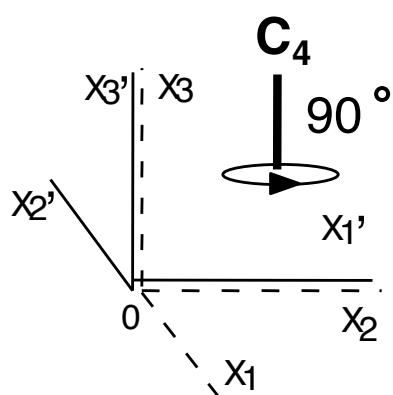
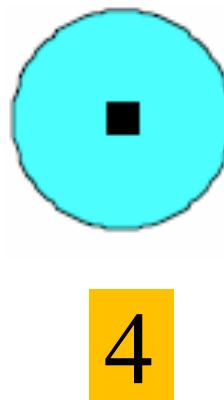
$m\bar{3}m$	Σ at 0 °C ($\mu\text{V K}^{-1}$)	Σ at 27 °C ($\mu\text{V K}^{-1}$)	at room temperature
Al	1.6	1.8	
Au	-1.79	-1.94	$\Delta T = 100 \text{ K}$
Cu	-1.70	-1.84	
Na		5	$\Delta\varphi \cong 10^{-1} - 10^{-3} \text{ V}$
Pd	9.00	9.99	
Pt	4.45		

Bi ₂ Te ₃ n-type rhombohedral	Σ at 54 °C 287 $\mu\text{V K}^{-1}$	Useful numbers, temperature ranges: https://www.omega.com/en-us/colorcodes
--	---	--

Convention in engineering: Seebeck coefficient $S = -\Sigma$

Applications of Neumann equation

Example: Σ_{12} ?



$$\begin{pmatrix} \Sigma_{11} & \Sigma_{12} & 0 \\ -\Sigma_{12} & \Sigma_{11} & 0 \\ 0 & 0 & \Sigma_{33} \end{pmatrix}$$

rotation $4_z(90^\circ)$

$$p'_1 p'_2 = -p_2 p_1 \Rightarrow \Sigma'_{12} = -\Sigma_{21}$$

$$p'_1 = p_2$$

$$p'_2 = -p_1$$

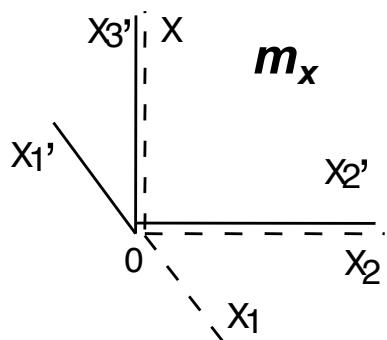
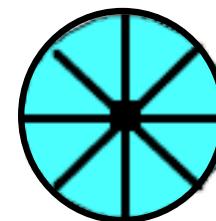
$$p'_3 = p_3$$

Neumann equation

$$\Sigma_{12} = -\Sigma_{21}$$

Applications of Neumann equation

Example: Σ_{12} -?



$$\begin{pmatrix} \Sigma_{11} & 0 & 0 \\ 0 & \Sigma_{11} & 0 \\ 0 & 0 & \Sigma_{33} \end{pmatrix}$$

4mm

plane m_x

$$p'_1 p'_2 = -p_1 p_2 \Rightarrow \Sigma'_{12} = -\Sigma_{12}$$

$$p'_1 = -p_1$$

$$p'_2 = p_2$$

$$p'_3 = p_3$$

Neumann equation

$$\Sigma_{12} = -\Sigma_{12} = 0$$

Thermoelectric anisotropy and axis choice

 1 (C ₁)			 1-bar (C ₁)			
 2 (C ₂)				 m (C ₃)		 2/m (C _{2m})
				 mm2 (C _{2v})	 222 (D ₂)	 mmm (D _{2m})
 3 (C ₃)			 3-bar (S ₄)	 3m (C _{3v})	 32 (D ₃)	 3-bar m (D _{3d})
 4 (C ₄)	 4-bar (S ₄)	 4-bar 2m (D _{2d})	 4/m (C _{4v})	 4mm (C _{4v})	 422 (D ₄)	 4/mmm (D _{4h})
 6 (C ₆)	 6-bar (C _{3h})	 6-bar 2m (D _{3d})	 6/m (C _{6v})	 6mm (C _{6v})	 622 (D ₆)	 6/mmm (D _{6h})
 23 (T)			 m-bar 3 (T ₄)	 43m (T ₄)	 432 (O)	 m-bar 3m (O _{4h})

$$9 \rightarrow 6$$

$$5 \rightarrow 4$$

$$3$$

$$2-3$$

$$1$$

$$\sum_{ij} \neq \sum_{ji}$$

Equilibrium and transport properties

Equilibrium

Dielectric response K_{ij}

Elasticity c_{ijkl} s_{ijkl}

Heat capacity C

**Piezoelectricity and
converse piezoelectricity** d_{ijk}

**Pyroelectricity and
electrocaloric** p_i

**Thermal expansion and
piezocaloric** α_{ji}

Maxwell relations

Transport

Electrical conductivity τ_{ij}

Thermal conductivity k_{ij}

**Seebeck and Peltier
effect** \sum_{ij}

Hall effect R_{ijk}

Onsager relations

Essential

1. The symmetry of a material can be translated into the symmetry of its transport properties.
2. Thermoelectric effects: Peltier and Seebeck effects
3. Transport properties give an examples of a non-symmetric second rank tensor - Thermoelectric tensor (Seebeck coefficients)