Lecture 9 (week 9: 14 April 2025)

Transport properties of solids

* Electrical conductivity
* Thermal conductivity

» Thermoelectric effects

Lecture 9, Crystalline materials: structures and properties
2025



Exercises — Series 9, cross-coupled effects,
thermoelectromechanics

Use of constitutive equations: tips and recommendations

D =¢KE +d o + pol

i g
g =d E+ s o +a ol
NS=p, L+ aoc + %éT

e What do you need to find?

 What are the boundary conditions?

 Maybe, some input data are redundant? (some effects are not
permitted because of symmetry...)

This reasoning helps selecting right equations ,



Exercises — Series 9, cross-coupled effects,
thermoelectromechanics

Use of constitutive equations

D =¢KE +d o + pol

! y-J
& =d E+ s o +a ol
NS=p,E+ oo, + —OI
 Choose a suitable set of equations (previous slide)
 [dentify the tensor structure, use symmetry, boundary conditions
and input data to simplify equations as much as possible
e check about the coordinate system of your problem, rotate the
tensors if needed

e combine equations, get the answer



Exercises — Series 9, cross-coupled effects,
thermoelectromechanics:
solutions and comments

In all the exercises, the material used 1s BaTi103 1n its tetragonal phase 4mm. The 4-fold axis 1s
always directed along the x3 axis. You may use the table of values for BaTi0; given below if
needed.

s;1 8.05 x 1072 m?/N dis 392x107*2C/N

S12 —2.35%x 10712 m?/N ds; —35x107'2C/N

S;3  —5.24 x 10712 m?/N ds; 86 x 10712 C/N

S35 15.7 x 1072 m?/N K;; 150

C 242x10°J/(m*®-K) | p3 -5x1074C/(m?-K)
as; 35x107°1/K

Some data are usable, others maybe redundant or irrelevant... 4



Exercises from Week 8

* 9.1. The effect of mechanical conditions on the pyroelectric response
is measured

* 9.2 The effect of mechanical conditions on the capacitance is
investigated

* For both exercises one needs to check mechanical boundary conditions
(clamped/free - what components of £and o are zero/nonzero)



Exercise 8.1

9.1. The effect of mechanical conditions on the pyroelectric response 1s measured. To do it, the
(001) surfaces of the parallelepiped BaTi103; sample are covered with electrodes, and the change
of the surface charge, driven by the temperature change, is measured (Fig.1).

In measurement (a), the sample 1s kept mechanically free.

In measurement (b), the sample 1s kept mechanically free in the x; and x, directions,
while the motion in the x3 direction 1s blocked.

Find the difference between the pyroelectric coefficients p(,) and p(,) measured these two

ways (provide the answer 1n the analytical form)

Electric boundary conditions:

AX3 Short circuit, E;=0

Mechanical boundary conditions:
Case(a): 0,=0

0}

X, Case (b) only o3 #0
83=0

X)
»




Exercise 8.1
D; = &K;jEj + dijoj + piAT,
& = dj;Ej + sijo; + a;AT.
In both cases, the electric field E; = 0 since the (001) electrodes are electrically connected. In order
to simplify the equation for D3, we use the 4mm symmetry restrictions for tensor K;j (K31 = K3, =
0), thus K3, E; = K3,E, = 0. The equation for D5 attains the following form:
D3 = dsjo; + psAT
In case (a), the sample is mechanically free, implying all 6; = 0. Then, D3 = p3AT, and

Ds
P = E = P3-

In case (b), the sample 1s kept mechanically free in x; and x, directions, implying o, =
0, = 04 = 05 = 0 = 0, and 03 # 0. Then, equation for D; rewrites as
D3 = d3303 + psAT
To find o3, we use the constitutive equation for £ = 0, which must not change during the

measurement (note that E5 = 0):
&3 = dng] + S3303 + agAT = d13E1 + d23E2 + S3303 + CZ3AT

. dsza
Result: D; = <p3 _ 233 3) AT,
S33
Py = & = p, — d33at3
@ =AT =77 sy
Thus, in (a) and (b) the measured pyroelectric responses are different. Specifically,
_ di33 7
P@) — Pm) =

S33



Exercise 8.2

The effect of mechanical conditions on the capacitance is investigated. To do it, the (001) surfaces
of the parallelepiped BaTiO; sample (distance between the (001) faces is L , the area of each (001)
face is S ) are covered with electrodes (fig.2), and the capacitance of the sample is measured.

In measurement (a), the sample is kept mechanically free.
In measurement ( b), the sample is kept mechanically free in the x; and x , directions (i.e., in
plane of capacitor), while the distance between electrodes L is forced to not change.

A electrical boundary conditions are not
A X3 . I
determined!

But, you do not need them do define C
y ~_D0Q _AD;-S
AV AE;-L

Show that the two measured capacitances C(,) and C(;) have different values. Calculate
C@—Cm)
Cla)

the relative difference between them . All measurements are done at constant

temperature.



Exercise 8.2

D; = SOKijEj + dijO'j, (K31 = K32 = 0)
& = d]lE] + Si]'O:,'.

D3 — 80K33E3 -+ d3j0-j.

(a), the sample 1s mechanically free, implying all o; = 0. Then, D; = £,K33E3, and
D;-S S

C(a) = E3 L = 80K33 Z

In case (b), the sample 1s kept mechanically free in x; and x, directions, implying o; =
0, = 04, = 05 = 0¢ = 0, and g3 # 0. Then, equation for D5 rewrites as
D3 = £oK33E3 + d3303.

&3 = d]3E] + S3303 = d13E1 + d23E2 + d33E3 + S3303

_ _ _ d33
83 —_ d33E3 + 5330-3 —_ 0 :> 0-3 — __533 Eg,
d3s
D; = (30K33 T >E3:

33

D,-S dz2.\ S
C(b) = E: L = <£0K33 _5_33>Z

33
Thus, in (a) and (b) the measured capacitances are different. Specifically,

Ca) — Cw) _ d33/533
Ca) €0K33

= 0.35



Electric response of solids: transport vs. dielectric

response
Conductivity Polarization
[

E=0 <v,>=0 E=0 <Vchf >=0
® © ® o

o $o 90

® © ® o

E#0 <v,>#0 <_HE_¢O <V¢h>=§:0
o ®6

o oo ®e

® o @

Displacements of the charges are much

Displacements of the charges are much
smaller that the interatomic distance

larger that the interatomic distance
. ) 10
Both described by 2nd rank tensor, but there are differences!



Electric response of solids, formal description

Conductivity Polarization
~ Zqz"—;i Zqi&i
J=- D_ i
v P=-—
Linear response
Ji =75k, b=k,
Conductivity tensor Dielectric susceptibility tensor
T Aij

ij

can be shown 7; =7 i = Xji
11



Transport property vs. equilibrium property

Dielectric response Electrical Conductivity

- equilibrium property - transport property
D =¢K,E, J, =1,E,
Kl.]. = Kﬁ. T, =T,

Energy at fixed E

1
dW =EdD, W=—ED,
2

Energy loss at fixed E

7)/4
a

12



Conductivity : Effect of Neumann in conventional axes

N

NN
M

NN
S

(c,) (C,)

©

©

Yah

N
\

:“1
S
- ;ﬂ

w‘\]

(C,) (©,) (Ca) | Ty

‘D
O,
%,
\/

~
S
o

2 222 mmm
(D,) (Dy) 2-33

©
©
()
%

(c,) (S, (Cy) (D,) (Dy) T] O 0

©
)
&)
()
XK
(D
&
\
}
8 8
-
-
s 8
§l\)

42m 4mm 422 4/mmm T
(c,) (S,) (D) (Cg) 3

(0,) (Dg)

©
()
2%
1O,
.
()
&

62m 6mm 622 6/mmm
(C,) (Cy) (Dy) (Cg) (Cq) (D) (Dg) | T 0
’

&

23 m3 3m 432 m3m T




Anisotropy of conductivity
J =1k,
Current is always parallel to the field only if
T; =10,

In anisotropic materials current is NOT ALWAYS
parallel to the field !

14



Transversal voltage

4/ mmm BiyTis0, 4

a) (first moment, transient response)

C 9 )

d) (steady-state current response)

-

rse component of the electric field F 15



Transversal voltage

Example Bi4Ti3O12 Made of less conductive layers TiO,
and more conductive layers Bi,0;
4/mmm
@
0 J, ? X
T'=800"C . i
a=0.25 (Qm)_1 | ‘/40 .
[ X
—1 5 < g 1
b=0.016 (Qm) if |
£ <)
(a 0 0 L|3 ¢ E.|
@ ’ R Bt |
=0 a 0 |
0 0 b) I T Pl =4

@B el OO 16



Spread of conduction

Many ceramics

Alumi Superconductors
Iu_mma — 5
Diamond Inorganic Glasses
] Mica Metals
Polypropylene | |
}|/p_p}|’ ’PALD]T Sodell_si|lica olass Degenere.ltely
PET! I Bgrosilicate  Pure_no), DOP@T SI Alloys

Intrinsic Si
go ~ Amorphous . . GaA% Te Graphte NCr A
i As,Se | nf | | |

| | | | | | | | | | |

1018 1015 1012 10°° 106 103 100 103 106 109 1012
Conductivity (Qm)-!

17



Transversal voltage and Hall effect

Magnetic field 69

Lorentz force:

F=q (v x B)

Hall voltage:

Vy=(,B,)/(ntq), where n-charge density, t-thickness, g-charge
18



Hall effect

Isotropic conductor

Magnetic field

1. Magnetic field modify the symmetry of the
system allowing the transverse voltage in
iIsotropic conductor

2. Transport effect 2 current

19



Hall effect: tensor aspect

Isotropic conductor

Magnetic field

Hall effects is controlled by a 3rd rank
pseudo-tensor

E, =R, B.J,

i ik

20



Thermoelectric
transport effects



Thermal conductivity

Energy dissipation

ho=—k, L k =k dw  h oT
R dt T ox,

k;; (kappa) — thermal conductivity tensor, 4, — heat flux

Analogy to electrical conductivity

0 aw 0
| Op i ; 4 _:Jj_¢
L Ox OX dt Ox

22



Thermoelectricity

Electrical Conductivity =~ Thermal Conductivity

ij
Thermoelectricity
T
J, = z'l.].Ej +a; 8_
8xj
ol
hi —_ bl]E] — klj g

J

Cross effects:

There should be a component of current proportional to the temperature gradient! 23



Thermoelectricity vs. piezoelectricity

Piezoelectricty Thermoelectricity
T
D, =¢K.E +d, o, J.=t,E +a, 2—
.y
oT
& :dkszk+Sijlekl h b E k 87

Maxwell relations DIPIPIIIID

24



Onsager relations for thermo-electric
transport phenomena

Ly =1 k. =k, bh. =—Ta

A i ji

Maxwell relations cannot be applied
because the energy does not characterize the state
of the material in a transport phenomenon

Onsager relations can be obtained from considerations
in terms of the energy dissipation in a process

Onsager relations express the equality of certain ratios between flows and forces 25



Themoelectricity vs. piezoelectricity

Piezoe|ectricty Thermoelectricity
D, =¢K.E +d, o, J=1,E +a, o
8xj

oT

gij:dkszk+Sijlekl h. Z—Ta E k g

J

Maxwell relations Onsager relations

26



Standard description of thermoelectricity

Changing variables:
Instead of field use current and temperature

-1

oT Py=1t i
JiZTU.Ej—I-al.ja—T Ei:piij+2ija7
axj J 2, =—p,a
oT > or
h =—Ta E —k — hi:TZ'iJ'_ki'_ T
i JUJ Y axj o ’ axj klj - kzj o Tasipslalj
Z Thermoelectric tensor

i/ (Seebeck coefficients)

In general Zij 7 Zji

27



Thermoelectric effect - example

Seebeck effect or
E =p]+X—
Ox

Jj=0 E=-22

Ox

E(g0+ZlT):O
ox

@+ 21T = const

DPr— @, :_Z(Tf - 1)

For simplicity Seebeck koefficients are considered T-independent
28



Thermoelectric effect - example

Seebeck effect

(01 T1 T2 ¢2

P <Lyl Tv gpf_goi:_z(Tf_];)
<0 ?, @l%

®, — @, =—2(T, - 1,) @, —p =—2(1,-1,)-2(T, - T))

0, — 9, =—3(T, -T,)-X(I, - T,) (T, - T,) =0

> cannot be measured this way

This is rigorous for small T, —T,, since X is
temperature dependent. 29



Thermoelectric effect - example

Seebeck effect
gpl T1 ZI Tz ¢2

DPr— @, :_Z(Tf -T)

©,— @, =—2,(T,-1)) @, —@p =—2,(1,-T,)-2(T,-T))

o, —@,=—2,I,-1)-2,(T,-1)-2,(1, - 1)) @

This is rigorous for small T, —T,, since X is
temperature dependent. 30



Thermoelectric effect - example

Peltier effect

~ 0T

h=T12J —k —

Ox

h]:]_Z[J hH:TZHJ
Y ——_

/

T = const

d_Q:S(h[_h[]):STJ(z[_z][):T(ZI_zH)]

dt

31



Thermoelectric Peltier and Seebeck effects

 We can regard the Peltier effect as the back-action counterpart to the
Seebeck effect :

-if a thermoelectric circuit is closed then the Seebeck effect will
drive a current

- this current in turn will always transfer heat from the hot to the
cold junction (via the Peltier effect)

- relationship between Peltier and Seebeck effects is seen in the

connection between their coefficients

 Applications:
-small refrigerators /coolers (Peltier effect) —.compact, no fluids

-temperature sensors (Seebeck effects ) - thermocouples

32



All symmetrie

symmetrical
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Seebeck coefficients of selected metals

2 at( °C 2 at27 °C

at room temperature

MM VK (VK

Al 1.6 1.8

Au -1.79 -1.94

Cu -1.70 -1.84

Na 5

Pd 9.00 9.99

Pt 4.45

Bi,Te; n-type 5" at 54 °.C

rhombohedral 287 1V K

AT =100 K

Ap=10"-10"V

Useful numbers, temperature ranges:

https://www.omega.com/en-us/colorcodes

Convention in engineering: Seebeck coefficient S = - X

34



Applications of Neumann equation

Example: 24,7

|
S

------- O 0 233
0. Xo 4
\\X1
. 0
rotation 4_(90") D =—pp =3 =3
19,1 B Neumann equation
P> =—P

D3 = Ds 2y = =2y,

35



Applications of Neumann equation

Example: X,-?

,. 5, 0 0
X3 :X m, 0 211 0
X1\i x2 0 0 233
N 4mm
lan — =
plancm, PPy =—PP, =L =2,
p1’= — P Neumann equation
P, = P,

222 2y =—2, =0

36



Thermoelectric anisotropy and axis choice
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Equilibrium and transport properties

Equilibrium
Dielectric response X
Elasticity Cos ikl
Heat capacity C

Piezoelectricity and d
converse piezoelectricity

Pyroelectricity and

: P;
electrocaloric

Thermal expansion and
o

piezocaloric ji

Maxwell relations

Transport

Electrical conductivity 7;

Thermal conductivity k;

Seebeck and Peltier -
effect Y

Hall effect Rl.jk

Onsager relations
38



Essential

1. The symmetry of a material can be translated
into the symmetry of its transport properties.

2. Thermoelectric effects: Peltier and Seebeck
effects

3. Transport properties give an examples

of a non-symmetric second rank tensor -
Thermoelectric tensor (Seebeck coefficients)

39



